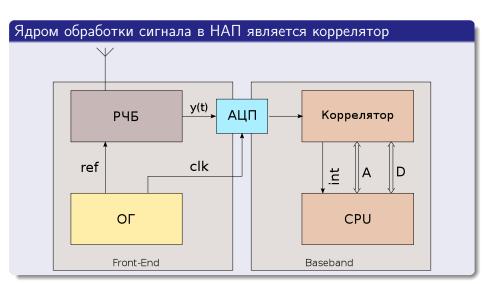
Лекция 4. Принцип работы коррелятора

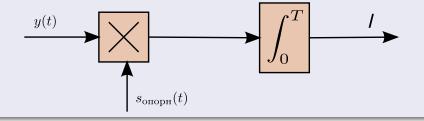
Болденков Е.Н.

Московский Энергетический институт


сентябрь 2014

Содержание

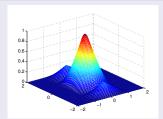
- А как всё просто начиналось!!!
 - Почему именно коррелятор?
 - Коррелятор, как основа дискриминаторов следящих систем
- Отруктура современного коррелятора
 - Обработка перспективных сигналов
 - Борьба с многолучёвостью
 - Допоиск сигнала
 - Блок быстрого поиска сигнала
- Оправотния в правот правот
 - Генератор гармонического сигнала
 - Генератор дальномерного кода
 - Эпоха дальномерного кода
 - Эпоха дальномерного ке
 - Прерывания


Структура НАП (в очередной раз!)

А как всё просто начиналось!!!

Основа НАП — коррелятор

$$I = \int_0^T y(t) \cdot s_{\text{опорн}}(t) dt.$$



Почему?

Метод максимума правдоподобия

Из теории следует, что необходимо искать максимум функции правдоподобия:

$$p\left(Y_0^T|\lambda\right) \underset{\lambda}{\to} \max$$

Метод максимума правдоподобия

Из теории следует, что необходимо искать максимум функции правдоподобия:

$$p\left(Y_0^T|\lambda\right) \underset{\lambda}{\to} \max$$

Пояснение

Структура наблюдений

Классическая задача предполагает наблюдение сигнала на фоне собственных шумов приёмника — аддитивных гауссовских шумов

$$y(t) = s(t) + n(t),$$

где n(t) — АБГШ со спектральной плотностью $N_0/2$

Гауссовское распределение

$$p(y|\lambda) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{\int_0^T (y-s(\lambda))^2}{2\sigma^2}\right\}$$

Гауссовское распределение

$$p(y|\lambda) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{\int_0^T (y - s(\lambda))^2}{2\sigma^2}\right\}$$

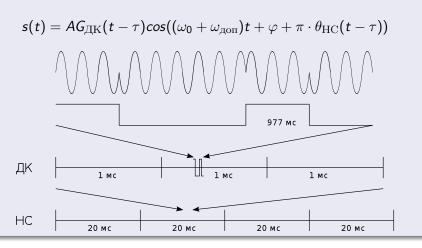
Логарифм гауссовского распределения

$$\ln\left(p(y|\lambda)\right) = C - \frac{1}{2\sigma^2} \int_0^T y^2 + \frac{1}{2\sigma^2} \int_0^T y \cdot s(\lambda) - \frac{1}{2\sigma^2} \int_0^T \left(s^2(\lambda)\right)$$

Если параметр неэнергетический, то

$$\int_0^T s^2(\lambda) = E/2$$

Тогда


$$ln(p(y|\lambda)) = C + \frac{1}{2\sigma^2} \int_0^T y \cdot s(\lambda)$$

С учётом монотоности, получим алгоритм

$$\int_0^T y \cdot s(\lambda) \underset{\lambda}{\to} \max$$

Структура сигнала (в очередной раз!)

Структура навигационного сигнала

Коррелятор в составе дискриминатора

Часто в качестве опорного процесса используется производная сигнала по параметру

$$\int_0^T y(t) \cdot \frac{\partial}{\partial \lambda} s(\lambda, t) dt$$

Коррелятор в составе ФАП

Для ФАП косинус превращается в синус

$$U_{\perp}(\varphi) = I \cdot Q$$

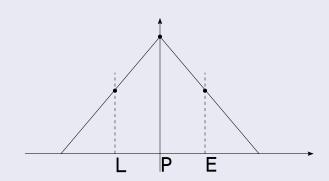
где

$$Q = \int_0^T y(t) \cdot AG_{
m JK}(t- au) sin((\omega_0 + \omega_{
m Aon})t + arphi)$$

Корреляятор в составе ССЗ

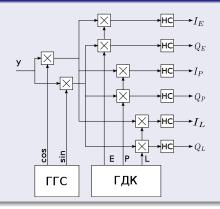
В ССЗ приходится брать разностную функцию

$$U_{\mathrm{II}}(au) = I\left(I_{\mathsf{E}} - Q_{\mathsf{E}}\right)$$

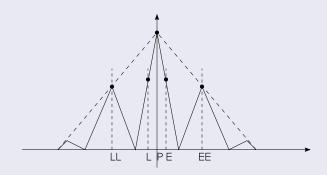

где

$$I_E = \int_0^T y(t) \cdot AG_{ ext{JK}}(t - \tau + \Delta \tau) cos((\omega_0 + \omega_{ ext{don}})t + \varphi)$$

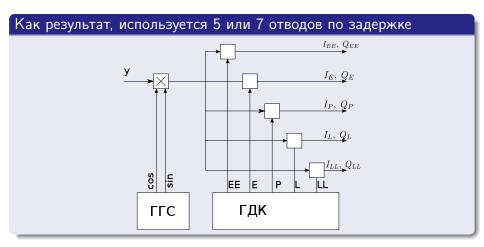
$$I_L = \int_0^T y(t) \cdot AG_{ ext{JK}}(t - \tau - \Delta au) cos((\omega_0 + \omega_{ ext{Jon}})t + arphi)$$


Расстановка корреляторов в обычном сигнале BPSK

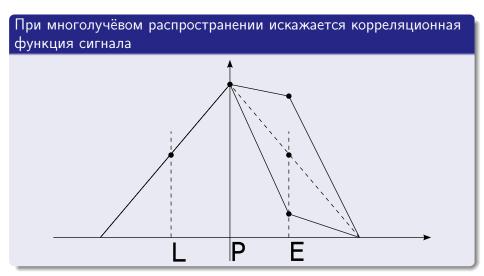
Обычно есть опережающие, запаздывающие и центральные компоненты


Стандартный набор корреляторов в канале

Стандартным считается б корреляторов в канале:



Коррелятор для перспективных сигналов

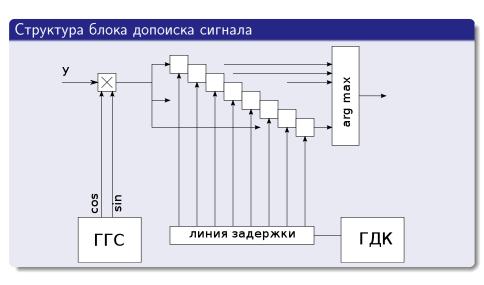

Перспективные сигналы с модуляцией ВОС имеют сложную АКФ

Коррелятор для перспективных сигналов

Коррелятор для борьбы с многолучёвостью

Лефортовский тоннель

Ситуация из жизни — пропадание сигнала на некоторое время


SiRFstar IV восстанавливает слежение через \sim 4 c после выезда из тоннеля

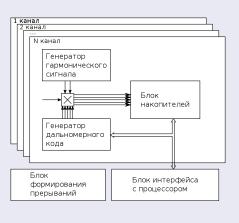
Лефортовский тоннель

Оценка необходимого для допоиска количества каналов коррелятора

- Время возможного пропадания сигнала $\sim 5 \, {\rm мин.}$
- За 5 мин машина может уехать на \sim 5 км.
- ullet В переводе в символы ПСП GPS получим ± 15 символов.
- ullet Если шаг допоиска 1/2 символа, то нужно 64 отвода по задержке.

Блок допоиска сигнала

Блок быстрого поиска — отдельная песня!!!

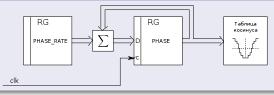

Структура блока быстрого поиска

Количество параллельных каналов коррелятора может достигать миллиона.

Коррелятор, как часть НАП

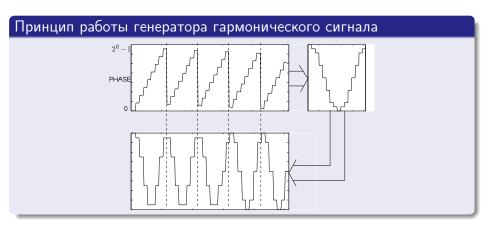
Структурная схема НАП

Коррелятор, как часть НАП


Карта памяти канала коррелятора

Диапазон смещений	Описание	Раздел (ссыл- ка)
0x00000-0x1FFFF	Общесистемные регистры для управ-	3
	ления коррелятором в целом	
0×20000-0×200FF	Регистры канала 1	4
0×20100-0×201FF	Регистры канала 2	4
0×22F00-0×22FFF	Регистры канала 48	4
0×30000-0×300FF	Порт UART0	5
0×30100-0×301FF	Порт UART1	5
0×30200-0×302FF	Порт UART2	5
0×30300-0×303FF	Порт UART3	5
0×30400-0×304FF	Порт UART4	5
0×30500-0×305FF	Порт I2С	6
0×30600-0×306FF	Контроллер SD/MMC	7
0×40000-0×4FFFF	Встроенный имитатор сигналов СРНС	8
0×50000-0×7000B	Блок сбора данных	9

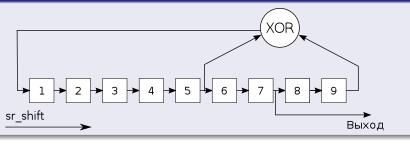
Опорный косинус и синус формируются табличным методом Блок расчёта фазы несущей индекс


Практическая реализация генератора

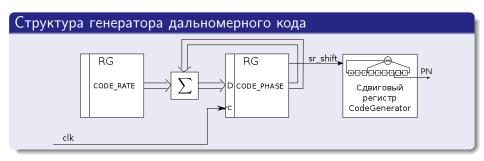
Основной параметр — код частоты

$$PHASE_RATE = \frac{f}{f_{\perp}} \cdot 2^{R}$$

где R — разрядность накопительного сумматора



Точность установки частоты определяется частотой дискретизации и разрядностью накопительного сумматора


$$\Delta f = \frac{1}{2^R} f_{\perp \perp}$$

При 26-разрядном сумматоре и частоте дискретизации 16.369 МГц точность составляет 0.24 Гц.

Традиционно дальномерные коды формировались на основе сдвиговых регистров с обратными связями

Ссылка: ИКД ГЛОНАСС 5.1, стр. 20.

Код частоты ПСП

$$CODE_RATE = \frac{f_c}{f_{\Box}} \cdot 2^R$$

где f_c — частота следования символов ПСП.

Пример — расчёт номинального кода частоты для сигнала ГЛОНАСС

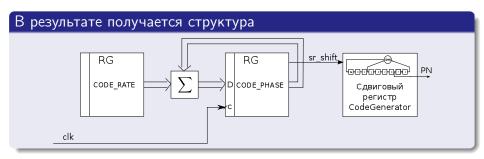
- Частота следования символов ПСП 511 тыс. симв. в секунду
- Пусть разрядность сумматора 27 разрядов.
- Пусть частота дискретизации 22 МГц Тогда код частоты равен:

$$CODE_RATE = \frac{511 \cdot 10^3}{22 \cdot 10^6} \cdot 2^{27} = 0x2F91C7$$

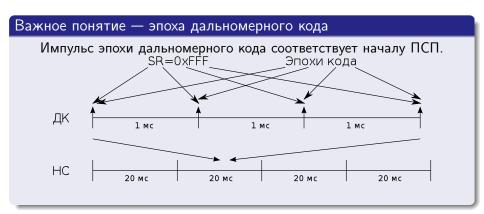
Точность установки частоты ПСП

- Пусть сигнал GPS C/A, темп следования символов ПСП 1.023 МГц.
- Пусть частота дискретизации 16.369 МГц.
- Пусть используется 27-разрядный сумматор.
- Тогда точность установки символьной частоты ПСП:

$$\Delta f_c = \frac{1}{2^{27}} \cdot 16.369 \cdot 10^6 = 0.12 \ \Gamma_{\mathrm{II}}$$


• Относительная точность установки частоты:

$$\delta f_c = \frac{0.12}{1.023 \cdot 10^6} = 1.1 \cdot 10^{-7}.$$



Как это выглядит на практике

```
reg [26:0] code phase;
reg [26:0] code rate;
wire sr shift;
wire PN:
wire epoch pulse;
always @(posedge clk) begin
   \{ sr \ shift, code \ phase[26:0] \} \le
       code phase [26:0] + code rate [26:0];
end
CodeGenerator CR (
   .clk (clk),
.shift (sr_shift),
   .code out (PN),
   .epoch (epoch pulse)
```

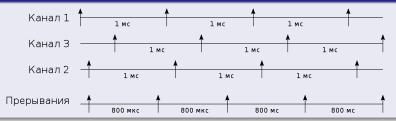

Эпоха дальномерного кода

Эпоха дальномерного кода

Управляющие коды вступают в силу только при наступлении эпохи кода

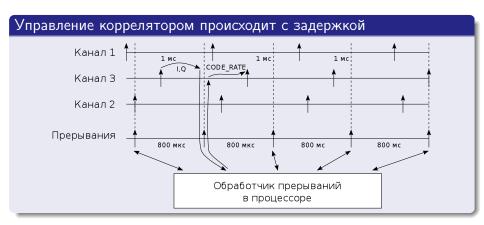
```
reg [26:0] code_rate_IN;
reg [26:0] code_rate;
wire epoch_pulse;

always @(posedge clk) begin
  if (epoch_pulse)
      code_rate[26:0] <= code_rate_IN[26:0];
end</pre>
```

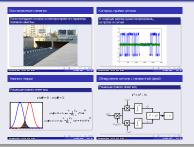

Эпоха дальномерного кода

Накопленные данные также снимаются в момент наступления эпохи

```
reg [15:0] I;
reg [15:0] I OUT;
wire epoch pulse;
always @(posedge clk) begin
  if (epoch pulse) begin
     I[15:0] \le y * PN * cos[2:0];
    I \cup OUT[15:0] \le I[15:0];
  end
  else
     I[15:0] \le I[15:0] + y * PN * cos[2:0];
end
```


Прерывания

Прерывания — определённые импульсы, сообщающие процессору, что пора снимать измерения с коррелятора


Период следования прерываний обычно делают меньше, чем длительность эпохи дальномерного кода.

Прерывания

Следующая лекция

Тема следующей лекции - обнаружение сигнала

Посетите наш web-сайт

http://srns.ru

