
1

Adaptive Beamforming Algorithm in Real Numbers Arithmetic

Ilya V. Korogodin, Sergey P. Ippolitov, Ivan V. Lipa

National Research University Moscow Power Engineering Institute, Russia

Abstract— Controlled reception pattern antennas (CRPA, serpers) are very useful for telecom-
munication, radar and navigation receivers. They allow the forming of several independent virtual
radiation patterns and to control the patterns’ form. As a result, the receiver can gain useful
signals and mitigate interferences and multipath signals. The mitigation performance is very
high, so, for example, it’s the only known way to improve GNSS receivers’ antijam capability
radically (from 40-50 dB to 90 and more dB).

CRPA operation method is quite simple. Both the useful signals and the interference signals are
captured by several antennas. The signals are considered as relatively narrowband, so, the signal
samples can be described as complex numbers with different arguments. After covariance matrix
accumulation and inverse matrix problem solving, it is possible to compute complex weights for
the signals combination. The combination adds the interference signals antiphasely and mitigates
them.

The complex representation and the narrowband assumption for the signals are a convenient
mathematical model. The model allows describing and implements signal delays as phase shifts.
On other hand, it limits mitigated interferences bandwidths and imposes algorithm implementa-
tion in complex numbers.

The complex representation increases a computational resource overspending. In that case, it is
required to use quadrature front-ends, four times more multipliers are needed to calculate the co-
variance matrix and implement filters. Inverse matrix problem solving is much more complicated
for complex numbers matrices.

In the study, we propose an adaptive beamforming algorithm in real numbers arithmetic. It
doesn’t use narrowband assumption for the signals. The algorithm operates by finite impulse
response filters for the signals alignment, real numbers for the covariance matrix and the signals
representation.

The real number representation allows decreasing algorithm complexity: number of multipliers,
inverse problem solving time and memory consumption.

1. INTRODUCTION

Let’s consider an GNSS antenna array. A typical one contains between two and seven elements.
Each element is a rectangular patch antenna. The bandwidth of the elements is quite tight, it is
about several tens of MHz. The polarization is circular for the central frequency, but it degenerates
to linear polarization on the edges of the frequency band.

The elements form either a square or a hexagon with the central element (see Fig. 2). Each
patch is rotated on ninety degrees relative to the previous one for symmetry. The elements can be
located both on a plane or on the spherical part. They are separated by a half wavelength usually,
but this is not a strict constraint.

The antenna system is constructed to receive GNSS signals in the L-band (about 20 centimeters
of wavelength). The size of the antenna system is from 10 to 50 centimeters.

The signals have between 2 and 20 MHz of bandwidth. As a result, the space correlation of the
modulation function is between 30 to 300 meters and is much more then the antenna array size. In
this condition, the antenna element signals have almost identical envelope delays, slightly different
amplitudes, and dramatically different phases.

The GNSS signals can be separated by about a 30 MHz gap (for example, the GPS and
GLONASS ones). So, the full frontend bandwidth can be up to about 50 MHz. The value de-
termines the maximum interference bandwidth, which must be considered in the signal processing
stage. The spatial correlation of such interference is about 10 meters. As a result, our assumption
about envelopes delays, amplitudes, and phases are still appropriate.

The interference can be of both intentional or unintentional nature. A narrowband harmonic
interference is the easiest case and can be mitigated without space processing. It is a typical

2

unintentional interference due to EMI troubles. The antijam capability is defined by the linear
properties of the receiver frontend and the analog-digital converters. It is about 40 dB of interference
to signal power ratio for modern civilian receivers. The value can be significantly increased up to
80 and more dB by means of frequency domain rejection techniques.

Wideband pseudorandom processes are a more complicated case. They are intended interfer-
ences usually. The interference has either chirp, BPSK or BOC spread-spectrum pseudorandom
modulation. The interference spectrum covers the whole signal bandwidth and it cannot be re-
jected by the frequency domain algorithms appropriately. Space-Time adaptive processing is a
very effective solution in this case. The antenna arrays allow for an increase in the receiver antijam
capability from 45 up to 90 or more dB for such interferences [3].

The third interference type is a spoofing. In this case, interferences simulate useful navigation
signals. This is the most dangerous situation due to low receiver antijam capability (low interference
power) and possible control consequences.

2. SPACE-TIME ADAPTIVE PROCESSING ALGORITHM

The controlled radiation pattern antennas (CRPA, ”serpers”) are used to perform space-time adap-
tive processing (STAP) and to reject interferences. Several STAP algorithms are known, they can
be presented as two serial steps: nullforming and beamforming. Nullformers reject interferences
and they are described by the next equation [1]:

ξ = w (θ)ᵀ y, (1)

where y is an array (vector) of different time and antennas input signal values, ξ is a resulting array
(vector) of cleared signals. Details of any certain STAP algorithms are in an approach of matrix w
calculation.

-1.5

-1

-0.5

0

-2

0.5

1

1.5

z

2

-1

y

0
-1

x

1 01

Satellite

direction

Jammer

direction

Figure 1: One of beamformer radiation patterns

Navigation satellite signals are weak, they don’t even achieve the receiver thermal noise power.
As result, antennas’ signals almost don’t have any correlation among each other in the normal
reception conditions. The assumption is disrupted by a strong interference presence. The antenna
signals become strongly correlated. The typical space and frequency domain interference mitigation
algorithm operates like de-correlator. So, the simplest form of the matrix w is just an inverse
covariance matrix R = E [y · yᵀ] for the vector y:

w = R−1, (2)

and the algorithm common view is

ξ = R−1y, (3)

3

If y is presented in the form of complex numbers, the matrices R and R−1 are complex too. In
accordance with the formula (3) it is necessary to multiply each element of y to the corresponding
element of the inverse matrix and to add the results. In other words, the algorithm (3) is a space-
time finite response filter with adaptive coefficients.

Covariance matrix is not known in practice and should be estimated. For example, we can use
direct estimation:

R =

L∑
l=1

yyᵀ/L (4)

Cleared signals ξ can be used for signals focusing:

yf = Hξ (5)

where H = H (α, β) is a steering vector for alpha, beta direction. Several yf signal for different
directions can be form. As a result, we have an antenna system with several virtual radiation
patterns and the space-time interference rejection function (see Fig. 1).

The navigation signal gain is relatively small due to a few antenna elements in the typical GNSS
antenna array. Such antennas cannot have sharp beams of the radiation pattern. The typical
gain is about 5 dB. But the beams can be very useful for multipath mitigation. Consequently, the
beamforming technique can increase accuracy for pseudoranges and pseudophase observables [2].

The small antenna array cannot have sharp beams, but it can have very deep nulls for interference
rejection. As result, nullformers dramatically increase the receiver antijam capability. The gain is
about 50 dB for wideband interferences [3].

The additional bonus of nullforming technique is that it can reject spoofing interferences. It is
necessary to form ten or more signals from the certain direction to perform a spoofing attack. Each
signal can be such low as the real navigation signal. But common power of all ten signals is rather
big and can be detected by a nullforming algorithm.

3. STAP ALGORITHM IMPLEMENTATION

STAP can be divided to high speed real-time ASIC/FPGA processing and low priority CPU
firmware for process management. It is proposed to use three types of FPGA/ASIC logic modules
(see Fig. 2):

• covariance matrix estimator (CVM),

• nullformer channel (NF),

• beamformer channel (BF).

The control unit can be implemented as CPU firmware.

Nullformer 1

Nullformer 2

Nullformer NFN

...

Beamformer 1

Beamformer 2

Beamformer BFN

...
Beamformer 2

NA

Covariance
matrix

estimator

Control
unit

Figure 2: Beamforming/nullforming algorithm

The main parameters of the considering STAP algorithm are the number of antenna elementsNA
and the time depth NT (length of NF impulse response). The y vector length is the multiplication
result of the parameters:

NY = NT ·NA. (6)

4

NF-filter

NF-filter

NF-filter

crpa_in0

crpa_in1

crpa_in7

NF Coefficients

Nullformer

∑

Figure 3: Nullformer module structure

z-1 z-1 z-1

∑

N
F

C
o
e
ffi

ci
e
n
ts

crpa_in
NF-filter

Figure 4: NF-filter module structure for
NT = 4

The number of antennas NA is equal to the number NFN of NF instances. Each NF contains
NA NF-filters (see Fig. 3).

Each NF filter is a finite impulse response filter of NT order (see Fig. 4).
The total multiplier numbers for all nullformers can be calculated as:

MNF = NFN ·NA ·NT. (7)

For example, a 7-element CRPA with NT = 4 demands MNF = 196 multipliers.
As it was mentioned above, a covariance matrix estimation is used for NF’s coefficients calcula-

tion. The covariance matrix is a NY ×NY matrix. But due to correlation matrix properties and
in assumption of stationarity of the random process the number of independent cells is much fewer:

NC = NA2 · (NT − 1) +
NA2 +NA

2
. (8)

For example, there are NC = 175 individual cells for 7-element antenna array (NA = 7) and
4-sample time depth (NT = 4). Reducing the number of antennas to 4 items decreases the number
to 58 cells. The total multiplier number for covariance matrix estimation module is equal to the
number of individual cells:

MCVM = NC. (9)

The beamformer instance structure is presented in fig. 5.

∑

Im

∑

Re
NF0

NF1

NF7

BF

Real parts of beamformer coefficients

Imag parts of beamformer coefficients

out_re

out_im

Figure 5: Beamformer module structure

5

There are 2 · NFN multipliers per each nullformer instance. The total amount of multipliers
for the beamformers implementation is:

MBF = 2 ·BFN ·NFN. (10)

For example, if the number of virtual radiation patterns BFN is equal to 12, then the total amount
of multipliers for beamformers is 168 items.

The total big amount of multipliers is a challenging issue for the STAP implementation. Con-
ventional approach supposes a complex signals utilization,and as a result, the multiplications must
be performed in the complex form.

Let’s consider the complex multipliers FPGA/ASIC implementation. In the case, the E and F
values must be found for:

E + jF = (A+ jB) · (C + jD) = (A · C −B ·D) + j(A ·D +B · C) (11)

There are two ways to perform the multiplication. The first one requires 4 real number multi-
pliers and 2 real number adders and it is represented by the formula (11). The second one allows
the change of a multiplier to three extra adders:

E + jF = (A · C −B ·D) + j((A+B) · (C +D) −A · C −B ·D) (12)

In the second case we need 3 real number multipliers and 5 real number adders to perform the
complex number multiplication.

Both schemes (11) and (12) can be used in practice. The choice depends on certain hardware
features. In the study we were aimed to Xilinx Zynq and ASIC implementations. After additional
studies the first scheme was chosen.

Let’s assume a real number multiplier can be implemented by one DSP-block of FPGA. Then
the total number of consumed DSP blocks can be presented like:

Ncmlx = 4 ·MNF + 2 ·MBF + 4 ·MCVM . (13)

Substitutions give the next result:

Ncmlx = 4 ·NFN ·NA ·NT + 4 ·BFN ·NFN + 4 ·NA2 · (NT − 1) + 2 ·NA2 + 2 ·NA. (14)

For example, we need 1820 DSPs for NFN = 7, NA = 7, BFN = 12, NT = 4 and 812 DSPs
for NFN = 1, NA = 7, BFN = 0, NT = 4.

Actually, the complex STAP algorithm requires the input signal preparation. It is typical
to implement high-linear frontends in non-complex forms. So, we should perform the Hilbert
transformation to get complex input signals. The order of each antenna filter is about 8, so the
transformations require 8 ·NA real-number multipliers.

4. REAL NUMBERS STAP

As shown above, conventional complex number STAP requires about 2000 DSP blocks for the
7-elements CRPA case. It’s a serious disadvantage and challenging issue to place the project to
both FPGAs and ASICs. Such ASIC suffers from the overheating problem. In the case of FPGA
implementation, the number of DSPs demand a high-end FPGA version (Zynq Z7100 [5] or Zynq
ZU6 and higher [5]).

To solve the implementation problem, it’s proposed in the paper to use a real number STAP
algorithm modification. The modification is rather simple, all complex units are changed by real
number versions: complex multipliers by real multipliers, complex adders by real number adders,
complex signals by real parts of the signals. In this case, the total number of DSP-blocks can be
presented as:

Nreal = ·NFN ·NA ·NT + 2 ·BFN ·NFN + ·NA2 · (NT − 1) +
·NA2 + ·NA

2
. (15)

For example, we need 539 (instead of 1820) DSPs for NFN = 7, NA = 7, BFN = 12, NT = 4
and 203 (instead of 812) DSPs for NFN = 1, NA = 7, BFN = 0, NT = 4.

It’s not obvious, but the algorithm keeps working after the modification. We just should consider
the algorithm as a space-time de-correlator instead of traditional antenna array with phase shifters.

6

Let’s introduce an indicator of the interference rejection as the efficiency coefficient:

Keff =
Ps,out

Pn,out + Pj,out

/
Ps,in

Pn,in + Pj,in
(16)

where Ps,x, Pn,x, Pj,x are the navigation signal power, the noise power, and interference power
before and after the space-time processing.

A simulation was performed for both the complex number and real number algorithms. The
simulation shows that the real number algorithm keeps efficiency in the case of the small num-
ber of interference sources. The efficiency coefficient in dependency of interference direction of
arrival (DOA) is depicted on the Fig. 6. The simulation is performed for NA = 7, NT = 4 and
J/S = Pj,in/Ps,in = 90 dB, the useful navigation DOA was 40 degrees. The model contained one
interference source with a 40 degree DOA.

0 20 40 60 80

Jammer DOA, deg

-40

-20

0

20

40

60

K
e
ff

,
d
B

real

complex

Navigation
 signal DOA

Figure 6: The efficiency coefficient for real number
and complex number algorithms for different inter-
ference’s direction of arrival

1 2 3 4 5 6

Number of jammers

0

10

20

30

40

50

60

70

K
e

ff
,
d
B

real

complex

Figure 7: The efficiency coefficient for real number
and complex number algorithms for different number
of jammers

A practice rule is known for complex STAP: number of mitigated jammers is equal to number
of antennas minus one [4]. For example, a seven element CRPA can reject up to six interferences.

This rule is disrupted for the real number algorithm case. The efficiency coefficient as function
of the number of jammers is pictured on the Fig. 7.

Consequently from graphs, the real number version of the algorithm has more strict limitations
to the number of jammers - about twice. And it is the main disadvantage of real number approach.

The real number STAP algorithm was implemented in a FPGA and ASIC. NF, BF and CVM
modules were written in SystemVerilog language. Control unit was written in C++.

The common ASIC/FPGA logic module structure is depicted on the Fig. 8.
An example of FPGA resource utilization for the CVM (175 individual cells) and NF-filter

modules in real number arithmetic is presented in the Table 1. The number of consumed DSP
is rather close to estimated value: 182 vs 175 for CVM and 4 vs 4 for NF-filter. Total resources
utilization is about 20% of the Xilinx Zynq 7045 chip for the whole project.

Table 1: Xilinx Zynq 7045 resources utilization for real number modules

Module Slice
LUTs

Slice
Regis-
ters

Slice LUT as
logic

LUT as
memory

LUT
FIFO
pairs

Block
RAM
tiles

DSP

FPGA 218600 437200 54650 218600 70400 218600 545 900

NF-filt 30 80 30 30 0 70 0 4
CVM 25877 28092 19632 25877 0 38798 0 182

A 7-element CRPA prototype was developed. The prototype utilizes 14-bit ADC and FPGA
with the presented algorithms. A series of experiments was conducted. Experiments confirmed

7

*=IM

CRPA

Registers unit

CRPA_regs

Nullformer 0
NF0

Nullformer 1
NF1

Nullformer 2
NF2

Nullformer 3
NF3

Nullformer 4
NF4

Nullformer 5
NF5

Nullformer 6
NF6

Nullformer 7
NF7

Beamformer 0
BF0_*

Beamformer 1
BF1_*

Beamformer 2
BF2_*

Beamformer 3
BF3_*

Beamformer 4
BF4_*

Beamformer 5
BF5_*

Beamformer 6
BF6_*

Beamformer 7
BF7_*

Beamformer 8
BF8_*

Beamformer 9
BF9_*

Beamformer 10
BF10_*

Beamformer 11
BF11_*

Quantizer 0
sig_mag0_*

Quantizer 1
sig_mag1_*

Quantizer 2
sig_mag2_*

Quantizer 3
sig_mag3_*

Quantizer 4
sig_mag4_*

Quantizer 5
sig_mag5_*

Quantizer 6
sig_mag6_*

Quantizer 7
sig_mag7_*

Quantizer 8
sig_mag8_*

Quantizer 9
sig_mag9_*

Quantizer 10
sig_mag10_*

Quantizer 11
sig_mag11_*

16

16

16

16

16

16

16

16

16

16

16

16

bf_out_rebf_out_im

*=RE

..

NF_out

14

16

16

16

16

16

16

16

16

crpa_in_0

crpa_in_7

crpa_in_1

Covariance
matrix

computation unit
CVM

d
a
ta

_i
n

..

..

master_in
master_out

cvm_start_in
cvm_start_out

nf_start_in
nf_start_out

cvm_clk

cvm_resetn

bf_out_rebf_out_imnf_out
12x1612x168x14

crpa_in_2

crpa_in_3

crpa_in_4

crpa_in_5

crpa_in_6

1

1

1
1
1
1

bf_re_sig12

bf_re_mag12

bf_im_sig12

bf_im_mag12

1
1

cvm_start
cvm_ready
cvm_mode
cvm_nstat
cvm_addr
cvm_rdata
cvm_status

BF_RE_CH_coeffs
12x8x4

BF_IM_CH_coeffs
12x8x4

NF_CH_coeffs
8x32x12

1
4

1
6

LS
B

 D
ro

p
d
a
ta

_i
n
_m

14

nf_clk

nf_resetn
2
2

adc_clk

aresetn_adc

1

1

clk

resetn

bf_clk

bf_resetn
2
2

addr
wdata

 rdata
 wr_en

rd_en

32

20

1

1

32

nf_load_irq cvm_start_irq cvm_ready_irq

Figure 8: Space-time processing ASIC/FPGA logic module structure

the simulation predictions: the algorithm successfully mitigates interferences and consumes a small
number of DSPs.

5. CONCLUSION

Conventional space-time processing algorithms operate in complex numbers. The complex repre-
sentation allows to perform time shifting for narrow band signals by means of multiplication to
complex weight, in other words, by means of phase shifting.

But the complex operations are rather complicated for calculation. The real number space-
time processing algorithm is proposed. The real representation of values allows the decrease of
FPGA/ASIC resource consumption about four times.

The efficiency of interference mitigation for the real number algorithm is equal to the efficiency of
the complex algorithm in the case of small number of jammers. Otherwise, the complex algorithm
has better performance.

8

ACKNOWLEDGMENT

This work was supported by the Ministry of Education and Science of the Russian Federation
(project no. 8.9615.2017/BCh)

REFERENCES

1. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays. John Wiley & Sons, 1980.
2. B. D. V. Veen and K. M. Buckley, Beamforming: A versatile approach to spatial filtering,

IEEE Signal Processing Mag., vol. 5, no. 2, pp. 4-24, April 1988.
3. Carlson, S.G., Popeck, C.A., Stockmaster, M.H., McDowell, C.E., ”Rockwell Collins’ Flexible

Digital Anti-Jam Architecture,” Proceedings of the 16th International Technical Meeting of
the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR,
September 2003, pp. 1843-1851.

4. Bartone, Chris, Stansell, Tom, ”A Multi-Circular Ring CRPA for Robust GNSS Performance in
an Interference and Multipath Environment,” Proceedings of the 24th International Technical
Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland,
OR, September 2011, pp. 1129-1139.

5. Xilinx Zynq-7000 SoC Data Sheet: Overview, DS190 (v1.11.1) July 2, 2018
6. Xilinx Zynq UltraScale+ MPSoC Data Sheet: Overview, DS891 (v1.7) November 12, 2018

